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This paper describes a measurement of the anomalous trilinear gauge boson couplings at the γWW
and ZWW vertices. We study WW and WZ events produced in pp̄ collisions at

√
s = 1.96 TeV,

considering events with one electron or one muon, missing transverse energy, and at least two jets.
The data samples were collected in RunIIa by the DØ detector and correspond to 1.07 fb−1 of
integrated luminosity each for the electron+jets and muon+jets channels. Assuming two different
relations between the anomalous coupling parameters ∆κγ , ∆λ and ∆gZ

1 , we set the 95% C.L.
limits to be −0.44 < ∆κγ < 0.55, −0.10 < ∆λ < 0.11 and −0.12 < ∆gZ

1 < 0.20 in the “LEP
parametrization” scenario and −0.16 < ∆κ < 0.23 and −0.11 < ∆λ < 0.11 in the “Equal couplings”
scenario.
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I. INTRODUCTION

The simultaneous production of two weak vector bosons is a process involved in a large number of measurements
at the Tevatron collider. A primary motivation for studying diboson physics is that their production and interactions
provide a test of the electroweak sector of the Standard Model (SM). In pp̄ collisions the diboson production process
provides the handle to study the interactions between vector bosons since it receives contributions from the vertex
involving the trilinear gauge boson couplings (TGCs) [1]. Any deviation of TGCs from their predicted SM values could
be an indication for new physics (NP) beyond the SM and could give us some clues about the electroweak symmetry
breaking mechanism (EWSB). The study of the production of WW , and WZ states has focussed dominantly on the
purely leptonic final states [2, 3]. For the WW + WZ cross section measurement in the lνjj final state we refer to
the accepted publication [4] and we describe the TGCs measurements in the same final state studied in this note.
The latest combined results from the LEP experiments [5] report higher precision of measured couplings than those
measured at the Tevatron. Due to the full reconstruction of the event kinematics in the e+e− collisions, higher signal
selection efficiencies and smaller background contamination, the increased statistics results in higher sensitivities to
anomalous couplings.
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FIG. 1: Tree level Feynman diagrams for the processes of the WW/WZ production at the Tevatron collider via t-channel
exchange (left) and s-channel exchange (middle and right).

As shown in the tree-level Feynman diagrams of Fig. 1, the TGCs contribute to W +W−/W±Z0 production via
s-channel exchange diagrams while the t-channel diagram dominates the total cross section. The s-channel contains
a trilinear gauge boson vertex γWW and/or ZWW depending on whether WW or WZ pairs are produced. Because
the Z boson does not couple to neutral gauge bosons, WZ production can only probe the ZWW vertex, while WW
production receives contributions from both the γWW and ZWW vertices.

II. PHENOMENOLOGY

The origin of EWSB and the mass generation mechanism are some of the biggest challenges of the SM today. The
SM introduces an effective Higgs potential with an upper limit on the Higgs boson mass of ≈ 800 GeV to prevent
tree-level unitarity violation. The unitarity bound indicates the mass scale at which the SM must be superseded by
some kind of new physics. For heavier Higgs boson masses (or in the Higgsless scenario) the NP (e.g. the new strong
dynamics [6]) must take its place in order to restore the unitarity at TeV energies and the SM is considered as a
low-energy approximation of another theory. Conversely, if a light Higgs boson exists, the SM may nevertheless be
incomplete, and NP could appear at higher energies. The effects of this larger theory are contained in the effective
low energy Lagrangian expanded in powers of (1/ΛNP ) as:

Leff =
∑

n≥0

∑

i

αn
i

ΛNP
n O

(n+4)
i = LSM

eff +
∑

n≥1

∑

i

αn
i

ΛNP
n O

(n+4)
i , (1)

where ΛNP is the energy scale of the NP. The coefficients αi parameterize all possible effects at low energies and the
effective Lagrangian (Eq. 1) parameterizes the low energy effects of the NP at higher energies in a model-independent
way. Since the NP scale is above the energies available in the experiments, the NP effects might not be observed
directly, but they can affect measured observables like the gauge boson self-interactions. For the study of the gauge
boson self-interactions, the relevant terms in the Lagrangian (Eq. 1) are those that produce vertices with three or
four gauge bosons. The effective Lagrangian that parameterizes the most general Lorentz invariant WWV vertex
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(V = Z, γ), involving two W bosons is defined as [7]:

LW W V
eff

gW W V
= igV

1 (W ∗
µνW µV ν − W ∗

µVνW µν) + iκV W ∗
µWνV µν + i λV

M2

W

W ∗
λ,µW µ

ν V νλ − gV
4 W ∗

µWν(∂µV ν + ∂νV µ)

+ gV
5 εµνλρ(W ∗

µ∂λWν − ∂λW ∗
µWν)Vρ + iκ̃V W ∗

µWν Ṽ µν + i λ̃V

M2

W

W ∗
λµW µ

ν Ṽ νλ,
(2)

where εµνλρ is the fully antisymmetric ε - tensor, W denotes the W boson field, V denotes the photon or Z boson

field, Vµν = ∂µVν − ∂νVµ, Wµν = ∂µWν − ∂νWµ, Ṽµν = 1/2(εµνλρV
λρ), gWWγ = −e and gWWZ = −e cot θW , where

sin2 θW is the weak mixing angle. The fourteen coupling parameters of WWV vertices are grouped according to
their symmetries as C (charge conjugation) and P (parity) conserving couplings (gV

1 , κV and λV ), C and P violating

but CP conserving couplings (gV
5 ) and CP violating couplings (gV

4 , κ̃V and λ̃V ). In the SM all couplings vanish

(gV
5 = gV

4 = κ̃V = λ̃V = 0) except gV
1 = κV = 1. The value of gγ

1 is fixed by the electro-magnetic gauge invariance
(gγ

1 = 1 for on-shell photons) while the value of gZ
1 may differ from its SM value. Considering the C and P conserving

couplings only, the deviations from the SM values are denoted as the anomalous TGCs (ATGCs) ∆gZ
1 (= gZ

1 − 1),
∆κγ = (κγ − 1), ∆κZ = (κZ − 1), ∆λγ (= λγ − 0) and ∆λZ (= λZ − 0). If the ATGCs are introduced in the
effective Lagrangian (Eq. 1), their increase will unphysically increase the WW and WZ production cross sections

as the partonic constituents center-of-mass energy
√

ŝ approaches to ΛNP and divergences would violate unitarity.
Divergences in the cross section are canceled out by introducing a form factor:

α(ŝ) → α0

(1 + ŝ/Λ2
NP )2

, (3)

for which the anomalous coupling vanishes as ŝ → ∞. The value of ΛNP used to set anomalous coupling limits for a
given coupling parameter α is the highest value possible before the unitarity limit is tighter than the coupling limits
set by data. Theoretical arguments suggest that the ATGCs are at most of O(M 2

W /Λ2
NP ) which implies that for

ΛNP ∼ 1 TeV the ATGCs are expected to be of O(10−2). As the NP scale increases, the effects on ATGCs are less
than O(10−2) and their observation needs either more precise measurements or higher center-of-mass energies.

Interpretation of the effective Lagrangian (Eq. 1), depends on the specified symmetry and the particle content
of the low energy theory. In the light Higgs boson scenario, the low-energy spectrum is augmented by the Higgs
boson and the NP is described using a linear realization of the symmetry. Including the scalar Higgs doublet field,
considering operators up to dimension-6 only and retaining SU(2) × U(1) gauge invariance, the effective Lagrangian
can be written in terms of the operator coefficients αi [8] where the NP scale ΛNP is replaced by the W boson mass.
In this so-called “LEP parameterization”, the relations between the C and P conserving TGCs then become:

∆κZ = ∆gZ
1 − ∆κγ · tan2 θW and λZ = λγ = λ, (4)

Hereafter in the text we will refer to this parametrization as the “LEP parametrization” with 3 different parameters,
κγ , λ and gZ

1 . The coupling κZ can be expressed via the relation given by Eq. 4. If the light Higgs boson is absent
or sufficiently heavy the effective Lagrangian should be expressed using a nonlinear realization of the symmetry [9]
to prevent unitarity violation. The description of self-couplings relies on the chiral Lagrangian [10] where the Higgs
doublet field is replaced by the Goldstone bosons and the scale ΛNP = 4πv. The assumption is that only SU(2)L ×
U(1)Y gauge fields, fermions and would-be Goldstone bosons are present and unitarity is restored by the strong EWSB
mechanism while the NP effects should appear at a scale below 3 TeV.

The second scenario is called the “Equal couplings” scenario [1], where the γWW and ZWW couplings are set equal
to each other. This is also relevant for studying interference effects between the photon and Z-exchange Feynman
diagrams in WW production (Fig.1). In this case, electromagnetic invariance sets ∆gZ

1 = ∆gγ
1 = 0, since it forbids

any deviation of gγ
1 from its SM value and the relations between the couplings become:

∆κZ = ∆κγ and λZ = λγ = λ, (5)

Besides the different scenarios previously mentioned, one can always probe the couplings assuming that there is no
constraint between κ, λ and g1. In the following analysis we assume “LEP parametrization” and “Equal couplings”
scenarios and set the limits on ∆κ, ∆λ and ∆g1 as if there are existing relations given by Eq. 4 or Eq. 5, respectively.
As already stated, in WW and WZ production the anomalous couplings contribute to the total cross section via
the s-channel exchange diagram. Anomalous couplings enter the differential production cross sections and give a
contribution to different helicity amplitudes which are proportional to the center-of-mass energy squared ŝ. Thus, at
a given ŝ the sensitivity to the coupling λ is higher because it is multiplied by ŝ in amplitudes for WW and WZ
production. The coupling κ is not directly related to ŝ or it is multiplied by

√
ŝ depending on the process. Besides,
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λ mostly affects transversely polarized gauge bosons which mainly contribute to the total cross section. Thus, we
expect higher sensitivity to λ than to κ couplings. A different sensitivity to the κ couplings depends on the choice of
the scenario as well. The sensitivity to the κ coupling in the “Equal couplings” scenario is higher than in the “LEP
parametrization” scenario, simply because of the different relations in Eq. 4 and Eq. 5.

We simulate the effects of anomalous trilinear gauge couplings by reweighting the predictions for WW and WZ
production from the Pythia [11] MC generator to match those made by Hagiwara, Zeppenfeld and Woodside (LO)
Monte Carlo (MC) generator (HZW) [12] which takes the effects of anomalous couplings into account. The reweighting
method uses the calculated matrix element values to predict the rate at which a given event would be generated in
the presence of anomalous couplings. The rate represents an event weight R. Since the HZW generator does not
recalculate matrix elements, we use high statistics samples to calculate the weight as a function of anomalous coupling.
Thus, we consider our approach as a very close approximation of the exact reweighting method. The basis of this
method is that the equation of the differential cross section, which has a quadratic dependence on the anomalous
couplings can be written as:

dσ = const · |M|2dX

= const · |M|2SM
|M|2

|M|2
SM

dX

= const · |M|2SM [1 + A(X)∆κ + B(X)∆κ2 + C(X)∆λ + D(X)∆λ2 + E(X)∆κ∆λ + ...]dX
= dσSM · R(X ; ∆κ, ∆λ, ...)

(6)

where dσ is the differential cross section which includes the contribution from the anomalous couplings, dσSM is the
SM differential cross section, X is a kinematic distribution sensitive to the anomalous couplings and A, B, C, D and E
are reweighting coefficients dependent on X . Consequently, Eq. 6 in the “Equal couplings” scenario is parameterized
with 2 couplings, ∆κ and ∆λ, and 5 reweighting coefficients, A(X), B(X), C(X), D(X) and E(X). In the “LEP
parametrization”, scenario, Eq. 6 is parameterized with 3 couplings ∆κγ , ∆λ and ∆gZ

1 and 9 reweighting coefficients
A(X), B(X), C(X), D(X), E(X), F (X), G(X), H(X) and I(X). The kinematic distribution X is chosen to be the pT

of the qq̄ system, which has the highest sensitivity to anomalous couplings, as shown in Fig. 2. Depending on the
number of reweighting coefficients, a system of the same number of equations allows us to calculate their values for
each event. Applied on the SM distribution X with any combination of anomalous couplings, the distribution X
weighted by R corresponds to the kinematic distribution X in the presence of a non-SM coupling according to Eq. 6.

To calculate reweighting coefficients, we generate 9 (“LEP parameterization”) and 5 (“Equal couplings”) different
R functions combining the shape information from the pqq̄

T distributions in the presence of anomalous couplings with
∆ = ± 0.5 relative to the SM. Once the weights R are properly normalized using the the cross sections given by the
generator, we derive the reweighting coefficients in the “LEP parameterization” as a function of pqq̄

T as:

C(X) = (R1 − R2)/2∆λ
D(X) = (R1 + R2 − 2)/2∆λ2

A(X) = (R3 − R4)/2∆κ
B(X) = (R3 + R4 − 2)/2∆κ2

E(X) = (R5 − R6)/2∆g1

F (X) = (R5 + R6 − 2)/2∆g1
2

G(X) = (R7 − 1 − A(X)∆κ − B(X)∆κ2 − C(X)∆λ − D(X)∆λ2)/∆κ∆λ
H(X) = (R8 − 1 − A(X)∆κ − B(X)∆κ2 − E(X)∆g1 − F (X)∆g1

2)/∆κ∆g1

I(X) = (R9 − 1 − C(X)∆λ − D(X)∆λ2 − E(X)∆g1 − F (X)∆g1
2)/∆λ∆g1,

(7)

where R1−9 are properly normalized event weights calculated with different sets of anomalous couplings ∆κ, ∆λ and
∆g1, and all deviation are ∆ = ± 0.5. In the “Equal couplings” scenario Eq. 7 consists of A(X), B(X), C(X), D(X)
and E(X) with E(X) taking a form of G(X). As a cross check, we recalculate the weight R for different ∆κ, ∆λ
and/or ∆g1 with reweighting coefficients obtained from Eq. 7 and compare reweighted pqq̄

T shapes to those predicted

by the generator as shown in Fig. 4. Discrepancies in shape (for pqq̄
T > 100 GeV) within ≤ ±5% and normalization

≤ 0.1% from those predicted by the generator, represent good agreement and allow us to describe the effects of
anomalous couplings using the approximated reweighting technique.

Thus, we generate three two-parameter grids by varying only two parameters in steps of 0.01 while the third one
is fixed to its SM value. Events from both the electron and the muon channel are summed. For a given (∆κ, ∆λ),
(∆κ, ∆g1) and (∆λ, ∆g1) combination each event in the reconstructed dijet pT bin is weighted by its weight R and
all the weighted events are summed in that bin.
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III. SELECTION OF WW/WZ → lνjj CANDIDATE EVENTS

This analysis builds upon a previous analysis in which we reported the first evidence of WW/WZ production with
lepton+jets final states at a hadron collider [13]. We will briefly summarize the previous analysis in this paragraph. We
used 1.07 fb−1 of RunIIa DØ data to select events with two jets, an electron or muon, and significant missing transverse
energy. The eνqq̄ candidate events are required to pass a trigger based on a single electron or electron+jet(s). In the
muon channel, we select all events in the available data sample which satisfy our kinematic selection requirements, with
no specific trigger requirement. To select WW/WZ→ `νqq̄ candidates, we require a reconstructed electron or muon
with transverse momentum pT > 20 GeV and pseudorapidity |η| < 1.1 (2.0) for electrons (muons), the imbalance in
transverse energy to be E/T > 20 GeV and at least two jets with pT > 20 GeV and |η| < 2.5. The jet of highest pT

must have pT > 30 GeV. To reduce background from processes that do not contain W→ `ν, we require a “transverse”
mass of M `ν

T > 35 GeV. Signal (WW and WZ) and background (W+jets, Z+jets, tt̄ , single top and ZZ) processes
are modeled using the MC simulation. All MC samples are normalized using next-to-leading-order (NLO) or next-to-
next-to-leading-order predictions for SM cross sections, except the most dominant background W+jets which is scaled
to the data. The multijet background events, in which the jet is misidentified as a lepton, is estimated from data. The
signal and the backgrounds are further separated using a multivariate classifier Random Forest (RF) classifier [14, 15]
to combine information from thirteen well-modeled kinematic variables. The signal cross section is determined from a
fit of signal and background RF templates to the data by minimizing a Poisson χ2 function with respect to variations
in the systematic uncertainties, and it is measured to be 20.2 ± 2.5(stat) ± 3.6(syst) ± 1.2(lumi) pb. The measured
yields for signal and each background are given in Table I.

TABLE I: Measured number of events for signal and each background after the combined fit (with total uncertainties determined
from the fit) and the number observed in data.

eνqq̄ channel µνqq̄ channel
Diboson signal 436 ± 36 527 ± 43
W+jets 10100 ± 500 11910 ± 590
Z+jets 387 ± 61 1180 ± 180
tt̄ + single top 436 ± 57 426 ± 54
Multijet 1100 ± 200 328 ± 83
Total predicted 12460 ± 550 14370 ± 620
Data 12473 14392

The WW and WZ events are generated with Pythia using the parton distribution functions (PDFs)
CTEQ6L1 [16]. These events are corrected by a kinematically-dependent next-to-leading-order k-Factor, as de-
scribed in Section VII of [4]. The WW and WZ production cross sections for the semileptonic final state generated
with the HZW and normalized to the SM value, as a function of anomalous couplings are shown in Fig. 3. We vary
only one coupling at a time leaving the others fixed at their SM values. The effects of ATGCs on different kinematic
distributions (pT of the qq̄ system and angular distribution of the qq̄ system) assuming the “LEP parametrization” are
shown in Fig. 2 for WW and WZ events. Since the TGCs introduce terms in the Lagrangian which are proportional
to the momentum of the boson pW/Z , it is expected that in the presence of ATGCs the differential cross section
dσ/dpW/Z deviates from the SM prediction. The same behavior is expected at large production angles of a boson.

Thus, the W/Z boson transverse momentum p
W/Z
T = pW/Zsinθ

W/Z
CM is sensitive to ATGCs and shows an enhancement

of a number of events at high p
W/Z
T values. Consequently, the differential cross section dσ/dp

W/Z
T is sensitive to these

changes too.
In the TGC analysis we use the reconstructed dijet pT spectrum of selected WW/WZ → `νqq̄ candidates (instead

of the RF output used in the previous analysis for the cross section measurement) defined as pjj
T =

√

p2
x,jj + p2

y,jj

(where px/y,jj is the sum of the 4-vector x/y-components of the two most energetic jets in the event) to probe the

data for the presence of the anomalous couplings ∆κ, ∆λ and ∆gZ
1 assuming the two different scenarios, “LEP

parametrization” and “Equal couplings”. All selection criteria and background estimates are the same as described
in previous paragraph.

IV. SYSTEMATIC UNCERTAINTIES

The statistical analysis for this measurement considers two general types of systematic uncertainties. Uncertainties
of the first class (Type I) are related to the overall normalization and efficiencies of the various contributing physical
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processes. The second class (Type II) consists of uncertainties which impact the kinematic distributions, commonly
referred to as shape uncertainties. Although Type II uncertainties may also impact efficiencies or normalization, any
uncertainty shown to impact the shape of the dijet pT distribution are treated as Type II.

All Type I uncertainties are determined via subsidiary data samples not included in this measurement. The
largest contributing uncertainties are those related to the cross section factors used to normalize the background
processes. These are related to the accuracy of the theoretical cross section calculation with the largest uncertainty
being 20 ⊕ 20 ≈ 28% for W/Z + heavy flavor jets cross sections. The remaining Type I uncertainties are associated
with the luminosity measurement and the efficiencies for reconstructing and triggering on leptons. Unless otherwise
specified, Type I uncertainties are considered to arise from Gaussian parent distributions.

The Type II uncertainties are those that, when propagated through the analysis selection, impact the shape of the
dijet pT distribution. Each Type II uncertainty is associated with a specific aspect of this analysis (e.g., the energy
scale of jets) and its magnitude is determined outside this analysis unless otherwise specified. The dependence of the
dijet pT distribution on these uncertainties is determined by varying each parameter by its associated uncertainty
(±1σ) and re-evaluating the shape of the dijet pT distribution. The resulting shape dependence is considered to
arise from a Gaussian parent distribution. Both types of systematic uncertainty are assumed to be 100% correlated
amongst backgrounds and signals. All sources of systematic uncertainty are assumed to be mutually independent,
and no inter-correlation is propagated. A list of the systematic uncertainties used in this analysis can be found in
Table II.

TABLE II: Systematic uncertainties in percent for Monte Carlo simulations and multijet estimates. Uncertainties are identical
for both lepton channels except where otherwise indicated. The nature of the uncertainty, i.e., whether it refers to a shape
dependence (Type II) or just normalization (Type I), is also provided. [The values for uncertainties with a shape dependence
correspond to the maximum amplitude of shape fluctuations in the dijet pT distribution (0 GeV < pT < 300 GeV) after ±1σ
parameter changes.]

Source of systematic
Diboson signal W+jets Z+jets Top Multijet Nature

uncertainty
Trigger efficiency, electron channel +2/ − 3 +2/ − 3 +2/ − 3 +2/ − 3 Type I

Trigger efficiency, muon channel +0/ − 5 +0/ − 5 +0/ − 5 +0/ − 5 Type II

Lepton identification ±4 ±4 ±4 ±4 Type I

Jet identification ±1 ±1 ±1 ± <1 Type II

Jet energy scale ±4 ±7 ±5 ±5 Type II

Jet energy resolution ±3 ±4 ±4 ±4 Type I

Luminosity ±6.1 ±6.1 ±6.1 ±6.1 Type I

Cross section ±20 ±6 ±10 Type I

Multijet normalization, electron channel ±20 Type I

Multijet normalization, muon channel ±30 Type I

Multijet shape, electron channel ±7 Type II

Multijet shape, muon channel ±10 Type II

Diboson signal NLO/LO shape ±10 Type II

Diboson signal ATGC reweighting ±5 Type II

Parton distribution function ±1 ±3 ±2 ±2 Type II

alpgen η and ∆R corrections ±1 ±1 Type II

Renormalization and factorization scale ±1 ±1 Type II

alpgen parton-jet matching parameters ±1 ±1 Type II

V. ANOMALOUS COUPLING LIMITS

The 68% C.L. and 95% C.L. contour plots (observed limits) in two-parameter space are shown in Fig. 5 and Fig. 6
as a function of anomalous couplings. The most probable values of the anomalous couplings ∆κ, ∆λ and ∆gZ

1 as
measured in data are shown by the black dots. The limits are obtained from the fits of different MC predictions in
the presence of anomalous couplings to data, using the dijet pT distributions of candidate events. We assume two
different relations between the anomalous couplings (“LEP Parametrization” and “Equal Couplings”) and ΛNP =
2 TeV. The observed limits are determined by a “best fit” of the signal and background templates to the observed
data. More specifically, the fit utilizes the MINUIT [17] software package to minimize a Poisson χ2 with respect to
variations to the systematic uncertainties as explained in DØ Note 5309 [18]. The used χ2 function is:
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χ2 = −2 ln

(

Nbins
∏

i

LP (di; m
′
i)

LP (di; di)

Nsyst
∏

k

LG(Rkσk ; σk)

LG(0; σk)

)

= 2

Nbins
∑

i

m′
i − di − di ln

(

m′
i

di

)

+

Nsyst
∑

k

R2
k (8)

where LP (k; λ) is the discrete Poisson likelihood for k events with a mean value of λ events; LG(α; σ) is the likelihood
for a variation from the mean value of α in a unit Gaussian distribution with variance σ; di is the number of data
events in bin i and m′

i is the systematically varied prediction for the number of MC events in bin i. The product
and sum in k runs over the number of systematic uncertainties. Systematics are treated as Gaussian-distributed
uncertainties on the expected numbers of signal and background events. The individual background contributions are
fitted to the data by minimizing this χ2 function over the individual systematic uncertainties [18]. The fit computes the
optimal central values for the systematic uncertainties, while accounting for departures from the nominal predictions
by including a term in the χ2 function which sums the squared deviation of each systematics in units normalized by
its ±1σ uncertainties.

Fig. 7 shows the dijet pT distributions in the electron, muon and combined channels after the fit, along with the
±1 standard deviation systematic uncertainty on the background and the residual distance between the data points
and the extracted signal, divided by the total uncertainty on the MC.

The observed 68% and 95% C.L. one-parameter limits, presented numerically in Table III are estimated from the
single parameter fit with the second parameter fixed at its SM value. The ∆χ2 values of 1 and 3.84 represent 68% C.L.
and 95% C.L. single parameter limits respectively, where the ∆χ2 is measured between data and MC distributions as
the MC is varied in the presence of anomalous couplings. Assuming the “LEP parameterization” the most probable
values as estimated from data are 1.07, 0.00 and 1.04 for κγ , λ and gZ

1 , respectively. For the “Equal couplings”
scenario the most probable values as estimated from data are 1.04 and 0.00 for κ and λ, respectively.

As one can see from Table IV, the 95% C.L limits on anomalous couplings ∆κγ , ∆λ and ∆gZ
1 set using the dijet

pT distribution of WW/WZ → lνjj events are tighter than the 95% C.L limits set in the DØ WW [19] and WZ [20]
analyses which use the fully leptonic channels. The 95% C.L. limits estimated in the DØ Wγ [21] analysis are
comparable to our result. The combined LEP results still represent the world’s tightest limits on charged anomalous
couplings [22–25]. The combination of all four LEP experiments’ results gives the most probable values of κγ , λ and

gZ
1 as κγ = 0.943+0.055

−0.055, λ = −0.020+0.024
−0.024 and gZ

1 = 0.998+0.023
−0.025 [5] at 68% C.L.

The presented measurement in lνjj final states is limited by statistics. With additional data the sensitivity to
anomalous couplings will approach the sensitivity of the individual LEP experiments [22–25] shown in Table V. With
the luminosity of 4 fb−1 of data already recorded by DØ the sensitivity to the λ coupling is expected to be comparable
to the sensitivity of a single LEP experiment. The limits on the κγ and gZ

1 couplings are expected to be less than two
times those of the individual LEP experiments.

TABLE III: The observed 68% and 95% C.L. one-parameter limits on anomalous couplings ∆κγ , ∆λ and ∆gZ
1 in selected

WW/WZ → lνjj data (for combined electron+muon channels) obtained from assuming the “LEP Parametrization” and
“Equal Couplings” scenarios for ΛNP = 2 TeV.

68% C.L. κγ λγ = λZ = λ gZ
1

LEP Parameterization κγ = 1.07+0.33
−0.22 λ = 0.00+0.06

−0.06 gZ
1 = 1.04+0.13

−0.05

Equal Couplings κγ = κZ = 1.04+0.15
−0.07 λ = 0.00+0.06

−0.06 -

95% C.L. ∆κγ ∆λγ = ∆λZ = ∆λ ∆gZ
1

LEP Parameterization -0.44 < ∆κγ < 0.55 -0.10 < ∆λ < 0.11 -0.12 < ∆gZ
1 < 0.20

Equal Couplings -0.16 < ∆κ < 0.23 -0.11 < ∆λ < 0.11 -
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TABLE IV: Comparison of 95% C.L. one-parameter TGC limits from DØ between the different channels: WW → lνlν,
Wγ → lνγ, WZ → lllν and WW + WZ → lνjj (l = µ, e) at ΛNP = 2 TeV.

LEP Parameterization ∆κγ ∆λγ = ∆λZ = ∆λ ∆gZ
1

WZ → lνll (1/fb) - -0.17 < ∆λ < 0.21 -0.14 < ∆gZ
1 < 0.34

Wγ → lνγ (0.75/fb) -0.51 < ∆κγ < 0.51 -0.12 < ∆λ < 0.13 -
WW → lνlν (1.0/fb) -0.54 < ∆κγ < 0.83 -0.14 < ∆λ < 0.18 -0.14 < ∆gZ

1 < 0.30
WW + WZ → lνjj (1/fb) -0.44 < ∆κγ < 0.55 -0.10 < ∆λ < 0.11 -0.12 < ∆gZ

1 < 0.20

Equal Couplings ∆κγ ∆λγ = ∆λZ = ∆λ ∆gZ
1

WZ → lνll (1/fb) - -0.17 < ∆λ < 0.21 -
Wγ → lνγ (0.75/fb) - -0.12 < ∆λ < 0.13 -
WW → lνlν (1/fb) -0.12 < ∆κ < 0.35 -0.14 < ∆λ < 0.18 -
WW + WZ → lνjj (1/fb) -0.16 < ∆κ < 0.23 -0.11 < ∆λ < 0.11 -

TABLE V: Measured values of κγ , λ and gZ
1 couplings and their errors at 68% C.L. obtained from the one-parameter fits

combining data from different topologies and energies at LEP experiments.

68% C.L. ALEPH OPAL L3 DELPHI

κγ 0.971±0.063 0.88+0.09
−0.08 1.013±0.071 1.25+0.22

−0.21

λ -0.012±0.029 -0.060+0.034
−0.033 -0.021±0.039 0.05+0.09

−0.09

gZ
1 1.001±0.030 0.987+0.034

−0.033 0.966±0.036 0.98+0.07
−0.07
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parameterized anomalous couplings ∆κγ = +0.5 (green), ∆λ = +0.5 (red) and ∆gZ
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1 , assuming the “LEP parametrization” scenario and ΛNP = 2 TeV. Black dots indicate the most probable values of
anomalous couplings from the two-parameter combined (electron+muon) fit.
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∆λ, assuming the “Equal couplings” scenario and ΛNP = 2 TeV. Black dots indicate the most probable value of anomalous
couplings from the two-parameter combined (electron+muon) fit.
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FIG. 7: Left: The dijet pT distributions from the electron (top), muon (middle) and combined channels (bottom) for data and
MC predictions following the fit of MC to data. Right: A comparison of the extracted signal (filled histogram) to background-
subtracted data (points), along with the ±1 standard deviation (s.d.) systematic uncertainty on the background. The residual
distance between the data points and the extracted signal, divided by the total uncertainty on the MC, is given at the bottom.
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